

Document Number: 626909-2.8

In-Band Manageability Framework

Developer Guide

July 2021

Intel Confidential

In-Band Manageability Framework
Developer Guide July 2021
2 Intel Confidential Document Number: 626909-2.8

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject
matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product
specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or visit
www.intel.com/design/literature.htm.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation.
Performance varies depending on system configuration. No product or component can be absolutely secure. Check with your system
manufacturer or retailer or learn more at intel.com.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

http://www.intel.com/design/literature.htm
http://intel.com/

 In-Band Manageability Framework
July 2021 Developer Guide
Document Number: 626909-2.8 Intel Confidential 3

Contents
1.0 Introduction .. 6

1.1 Purpose .. 7
1.2 Audience .. 7
1.3 Terminology ... 8

2.0 Source Overview .. 9
2.1 Agents Overview ... 10
2.2 Run Agents via Source Code ... 15

3.0 Build instructions .. 16

4.0 Configuring Framework ... 17

5.0 Security ... 18
5.1 OS Hardening ... 18
5.2 Turtle Creek Hardening.. 18

5.2.1 AppArmor Profiles ... 18
5.2.2 Access Control List .. 19
5.2.3 MQTT over TLS Support ... 19
5.2.4 Trusted Repo List ... 19
5.2.5 Signature Verification on OTA Packages ... 19
5.2.6 Manifest Schema Checks .. 20
5.2.7 Docker Bench Security .. 20
5.2.8 Platform TPM usage ... 20

6.0 Enable Logging .. 21

7.0 OTA updates via Manifest ... 22
7.1 Manifest Rules .. 23
7.2 AOTA Updates ... 23

7.2.1 AOTA Manifest Parameters ... 24
7.2.2 Docker manifest examples .. 26
7.2.3 Docker-Compose Manifest Examples ... 27

7.3 FOTA Updates .. 29
7.3.1 FOTA Manifest Parameters ... 29
7.3.2 Sample FOTA Manifest .. 31

7.4 SOTA Updates ... 32
7.4.1 SOTA Manifest Parameters ... 32
7.4.2 Sample SOTA Manifest: .. 33

7.5 Configuration Operations ... 34
7.5.1 Configuration Manifest .. 35
7.5.2 Manual Configuration Update: ... 37

7.6 Power Management... 37
7.6.1 Restart via Manifest ... 37

In-Band Manageability Framework
Developer Guide July 2021
4 Intel Confidential Document Number: 626909-2.8

7.6.2 Shutdown via Manifest .. 37

8.0 Extending FOTA support ... 38
8.1 Understanding FOTA Configuration File .. 38
8.2 Configuration Parameter Values .. 38
8.3 AppArmor Permissions: ... 40

9.0 Creating a New Agent ... 41

10.0 Issues and Troubleshooting ... 43
10.1 OTA Error Status ... 43
10.2 Dispatcher-Agent Not Receiving Messages .. 44

Tables
Table 1. Terminology ... 8

 In-Band Manageability Framework
July 2021 Developer Guide
Document Number: 626909-2.8 Intel Confidential 5

Revision History

Date Revision Description

July 2021 2.8 Updated TPM usage and Platform OS assumptions.
Updated security information.

May 2020 2.1.1 EIS 2.2 release.

§

Introduction

In-Band Manageability Framework
Developer Guide July 2021
6 Intel Confidential Document Number: 626909-2.8

1.0 Introduction

In-Band Manageability Framework (Turtle Creek) is a software running on Edge IoT
Device, which enables an administrator to perform critical Device Management
operations over-the-air remotely from the cloud. It also facilitates publishing of
telemetry and critical events and logs from the Edge IoT device to the cloud enabling
the administrator to take corrective actions if, and when necessary. The framework is
designed to be modular and flexible, ensuring scalability of the solution across
preferred Cloud Service Providers (for example, Azure* IoT Central, Telit DeviceWISE,
ThingBoard.io, and so on).

Some of the key advantages of Intel’s In-band Manageability solutions are:
1. Out-of-box cloud support: Azure IoT Central, Telit DeviseWise, ThingsBoard.io.
2. Single interface to handle OS, FW and Application (Docker container) updates.
3. Scalable across Intel x86 (Intel Atom® and Intel® Core™) architectures SoCs and on

Vision platforms from Intel.

This document provides detailed instructions on how to provision a device with Azure
IoT Central.

Introduction

 In-Band Manageability Framework
July 2021 Developer Guide
Document Number: 626909-2.8 Intel Confidential 7

The Device Management use-cases covered by the In-Band Manageability Framework
are listed in the table below:

Use-cases Notes

Update • System (OS), Software-over-the-air (SOTA)
• Firmware-over-the-air (FOTA)
• Application-over-the-air (AOTA)

Telemetry • System attributes
• Events
• Devices States
• Usage data

Recovery • Rollback post updates
• System Reboot/Shutdown

Embedded within the In-Band Manageability Framework are features that ensure
Security and Diagnostics aspects:

Features Notes

Security • ACL for trusted repositories
• Mutual TLS authentication between services
• TPM to store framework secrets

Diagnostics • Pre and Post OTA update checks
• Periodic system checks

1.1 Purpose

This Developer Guide provides the reader instructions on how to navigate and build
Turtle Creek framework source code. It also provides information that Manageability
solution developers will find useful, for example:

• Turtle Creek configuration file composition

• Enable logging

• Adding new Platform support for FW update capability

• Adding support to a new Cloud Backend and Communicating with Turtle Creek
framework

1.2 Audience

This guide is intended for

• Manageability Solution developers to extend/modify Turtle Creek framework.

Introduction

In-Band Manageability Framework
Developer Guide July 2021
8 Intel Confidential Document Number: 626909-2.8

• System Integrators administrating devices running In-Band Manageability
framework.

1.3 Terminology

Table 1. Terminology

Term Description

AOTA Application Over the Air (Docker)

BIOS Basic Input Output System

Device A device is any equipment that is installed to be monitored or
controlled in a building. Examples of devices include light switches,
thermostats, cameras, other mechanical loads, chillers, cooler, and so
on.

FOTA Firmware Over the Air

FW Firmware

IoT Internet of Things

OS Operating System

OTA Over-the-air

SMBIOS System Management BIOS

SOTA Software Over the Air (OS update)

§

Source Overview

 In-Band Manageability Framework
July 2021 Developer Guide
Document Number: 626909-2.8 Intel Confidential 9

2.0 Source Overview

In-Band Manageability has five different agents namely cloudadapter, configuration,
diagnostic, dispatcher, telemetry. Each agent has its own unique responsibility to
handle different things.

Each agent communicates with the other agents by using the MQTT list below in
Section 8.

The source structure of turtle-creek is as shown in the diagram below:

Source Overview

In-Band Manageability Framework
Developer Guide July 2021
10 Intel Confidential Document Number: 626909-2.8

2.1 Agents Overview

Cloudadadapter-agent: This agent is responsible for all the communication between
the device and the cloud. It handles all the operations related to connections to the
cloud, publishing messages to the cloud, receiving messages from the cloud etc.
Whenever a request for an OTA is made the message is first received by the
cloudadapter agent and then passes it over to the dispatcher agent via MQTT channel
for performing the request.

The file cloudadapter-agent/cloudadapter/constants.py contains all the MQTT
subscription and publishing channels used by cloudadapter-agent to communicate
with other agents.

This section of code deals with the connection of
agent to MQTT broker, managing the cloud
requests and publishing the cloud requests on the
respective channels.

The cloud adapter specific to a cloud provider is
being defined within the code in this section.
Telit/Azure have their own adapter code which is
used to configure respective cloud. Thingsboard
uses generic_adapter.

This starts the cloudadapter agent

Source Overview

 In-Band Manageability Framework
July 2021 Developer Guide
Document Number: 626909-2.8 Intel Confidential 11

Configuration-agent: This agent is responsible for publishing the config parameter
values across all other agents. The parameters being used by this agent are from
/etc/intel_manageability.conf file. The descriptions of the parameters are available in
the USER guide. To configure and use a new parameter, refer Section 4.

The broker.py handles all the config updates that are to be performed on the system.
The configuration.py starts the configuration agent.
The xml_handler.py contains the necessary functions required to modify the XML conf
file.
The constants.py contains all the MQTT subscription and publishing channels used by
configuration-agent.

Source Overview

In-Band Manageability Framework
Developer Guide July 2021
12 Intel Confidential Document Number: 626909-2.8

Diagnostic-agent: Diagnostic agent monitors and reports the state of critical
components of the framework. This agent is responsible for performing all the
diagnostic checks like system health checks. It requires software checks before
installation, network checks, docker stats, docker-bench-security checks as such. These
checks will be performed at timed intervals. These timed intervals can be altered by
changing the interval seconds within the /etc/intel_manageability.conf file using
configuration updates from cloud via button click or manifest update. Once the checks
are completed, the result message is published to the cloud as telemetry.

The command_pattern.py consists of all the commands/checks that are being handled
by the diagnostic agent.
The constants.py contains all the MQTT subscription and publishing channels used by
diagnostic-agent.
The dispatch_command.py dispatches correct command/checks based on the request.
The docker_bench_security_runner.py runs the DockerBenchSecurity checks on the
docker containers and images, while the event_watcher.py watches for events from
Docker.
The repeating_timer.py creates a timer that repeats for a given interval specified by the
time-based checks.
The file constants.py contains all the MQTT subscription and publishing channels used
by diagnostic-agent to communicate with other agents.

Source Overview

 In-Band Manageability Framework
July 2021 Developer Guide
Document Number: 626909-2.8 Intel Confidential 13

Dispatcher-agent: The dispatcher-agent’s role is to dispatch and perform the received
commands/operations from the cloud on the device. It is responsible for determining
what kind of request is received from the cloud and it invokes the respective
commands/threads that would perform the desired operation. Once the operation is
performed, the status of the operation will be published to the cloud by this agent.

This section handles the AOTA operations
upon AOTA thread creation by ota_thread.py

This section handles the FOTA operations
upon FOTA thread creation by ota_thread.py

This section handles the SOTA operations
upon SOTA thread creation by ota_thread.py

The dispatcher_class.py contains handles an
OTA request from cloudadapter agent and
then creates a thread respective to the OTA
triggered. This code uses a factory pattern to
determine the correct instance of the class to
be used. A concrete instance of a class is
derived from ota_factory.py.

The file constants.py contains all the MQTT
subscription and publishing channels used
by dispatcher-agent to communicate with
other agents.

Source Overview

In-Band Manageability Framework
Developer Guide July 2021
14 Intel Confidential Document Number: 626909-2.8

Telemetry-agent: The Telemetry agent publishes all the system’s static and dynamic
telemetry to the cloud.

The broker.py initializes the agents publish/subscribe channels.

The container_usage.py has code that gets the container stats on a device.

The dynamic_attributes.py contains functions that retrieve dynamic telemetry
information such as disk_usage, cpu percentage, network telemetry, and available
memory,

The static_attributes.py have function that gets the device’s static telemetry
information such as cpu_id, disk information, and total physical memory,

The telemetry_handling.py is responsible for calling the necessary telemetry events
upon time-intervals and then publishing the information on to the cloud and other
agents when needed.

The file constants.py contains all the MQTT subscription and publishing channels used
by telemetry-agent to communicate with other agents.

Source Overview

 In-Band Manageability Framework
July 2021 Developer Guide
Document Number: 626909-2.8 Intel Confidential 15

2.2 Run Agents via Source Code

To run the agents after modifying the source code and test the source code, the
developer is required to run the script dev-mode.sh located under the iotg-
manageability directory.

For a developer to run and test the modified code, the following requirements are
required on the device the developer is working on:

• Prior to developer running the code from source, Turtle Creek should be installed,
running in binary mode, and provisioned to the cloud.

The dev-mode.sh script checks the environment, installs all the required dependencies,
disables, and stops the active Turtle Creek agents.

If the network needs proxy, the developer may need to add the respective proxy
information in line 92 for pip within the dev-mode.sh to install the dependencies. If no
proxy is required, the proxy parameter needs to be removed from the script.

Once the necessary changes are made to the code, the developer is required to open
one terminal for each associated agent. On each terminal, run the following commands:
1. cd ~/iotg-manageability/inbm/<agent>
2. execute tests

Additionally, the user can enable logging from the agent terminal using the command

make logging LEVEL=DEBUG

or refer to Section 5 to enable logging prior to running the Turtle Creek via source code.

§

Build instructions

In-Band Manageability Framework
Developer Guide July 2021
16 Intel Confidential Document Number: 626909-2.8

3.0 Build instructions

Developers can build Turtle Creek executables if source is provided as part of the
release package.

To successfully build Turtle Creek code, the user would need to execute the following
commands, to make sure the scripts have the executable access:

cd turtlecreek/source

find . -type f -iname configure -exec chmod +x {} \;

find . -type f -iname "*.sh" -exec chmod +x {} \;

chmod -R 755 trtl/scripts/

The user should be able to build the source from the directory turtlecreek/source
using the command.

Note: Docker needs to be installed on the system to build the code.

sudo ./build.sh

or the following command can also be used for better build performance:

sudo DOCKER_BUILDKIT=1 ./build.sh

When the build is complete, the build output can be found in the turtlecreek/source/
output folder.

§

Configuring Framework

 In-Band Manageability Framework
July 2021 Developer Guide
Document Number: 626909-2.8 Intel Confidential 17

4.0 Configuring Framework

There may be scenarios where new configurations are required to be added to extend
the functionality of the Turtle Creek framework. For example, if a developer plans to
add a new health check telemetry code within the framework, and wants to configure
the /etc/intel_manageability.conf to accommodate this health check tag with a certain
value, follow the steps:
1. The user needs to first edit the configuration base file at

~/turtle-creek/configuration-agent/fpm-template/etc/intel_manage
ability.conf

2. The xsd schema that validates the above file must also accommodate the new tag,
else the schema validation would fail. The schema is located at

~/turtle-creek/configuration-agent/fpm-template/usr/share/
configuration-agent/turtle_creek_schema.xsd

3. Once the changes are made, the code can now use the new parameter value added
to the conf file.

4. To test the changes the developer can build the entire source code using the build
instructions mentioned in Section 3, and then uninstalling and reinstalling the
turtlecreek from output folder after the build is complete.

 (Or)

Copy the conf file in step 1 to /etc/intel_manageability.conf and xsd_schema file in step
2 to /usr/share/turtle_creek_schema.xsd and then run the agents via source code. To
run the modified source code, refer Section 2.2.

§

Security

In-Band Manageability Framework
Developer Guide July 2021
18 Intel Confidential Document Number: 626909-2.8

5.0 Security

Security is a key aspect for any software solution to consider, especially for IoT devices
that would be deployed in the field. The below section details out the various
techniques, measures, assumptions, and recommendations we made when designing
Turtle Creek.

5.1 OS Hardening

Turtle Creek, a user space application, relies on the underlying OS to have inbuilt
security capabilities. Below is a list of solution that is recommended to help harden the
security of any OS.

Secure Boot: An industry standard now, where the Platform Firmware (BIOS) checks
signature of the boot chain software, for example, UEFI drivers, EFI applications, and OS
Kernel. If the signature is valid, the BIOS proceed with the boot chain. This mechanism
ensures that boot chain components were not altered at rest and hence can guarantee
to certain extent the integrity and authenticity of the boot components.

AppArmor: AppArmor is an access control mechanism in Linux kernel, which confines a
program to resources that are set in its profile. AppArmor binds access control
attributes to Program and not to Users. AppArmor profiles are loaded during boot by
the kernel and consist of policies that the Program would be subjected to while
accessing the resources listed in it.

5.2 Turtle Creek Hardening

In addition to the OS hardening recommendations, Turtle Creek also ensures a Secure
solution by following the below mechanisms.

5.2.1 AppArmor Profiles

All the Turtle Creek frameworks services/tools have an associated AppArmor profile,
which gets enforced when the framework is installed on a platform. These profiles
define the access that Turtle Creeks executables have on the underlying platform
resources (file system), ensuring only certain directories are readable/writeable, thereby
reducing the risk of corrupting the platform by accessing an unauthorized resource via
Turtle Creek.

These profiles can be found under /etc/apparmor.d/usr.bin.<turtle creek services>

Security

 In-Band Manageability Framework
July 2021 Developer Guide
Document Number: 626909-2.8 Intel Confidential 19

5.2.2 Access Control List

Turtle Creeks services communicate with each other over MQTT in localhost. MQTT
being a pub/sub protocol client publish and receive information on predefined “topics”.
Controlled access to these topics is critical to ensure that an unauthorized MQTT client
is not able to eavesdrop or publish incorrect/garbage data to legitimate clients. Access
control is achieved by setting up ACL list in the MQTT Broker configuration. Access
control specifies which topic each of the MQTT clients is authorized to read and write
to.

ACL list is defined in /etc/intel-manageability/public/mqtt-broker/acl.file

5.2.3 MQTT over TLS Support

To further protect the confidentiality of data being transmitted between Turtle Creek
services, the session between the MQTT Broker and the services is established over
mutual TLS. During the provisioning phase of Turtle Creek on a platform, the
provisioning script sets up the MQTT broker and the Turtle Creek services with X509
cert and keypairs to facilitate mTLS session. The certs and keys are located under:

Certificate: /etc/intel-manageability/public/<>

Key: /etc/intel-manageability/secret/

5.2.4 Trusted Repo List

The OTA command consists of a URL from where Turtle Creek fetches the update (FW,
OS, Application) package. To ensure that a package is only fetched from a trusted
location, Turtle Creek maintains a list of URLs tagged as – <trustedRepositories> in the
configuration file.

The trustedRepositories URL’s can be found in: /etc/intel_manageability.conf

5.2.5 Signature Verification on OTA Packages

To ensure that the OTA packages are not modified or corrupted, Turtle Creek also
employs signature verification of the downloaded OTA package against an OTA cert
that the users can enroll during the provisioning step. Turtle Creek verifies the
signature of the OTA package being sent in the Manifest against the signature
generated using the enrolled OTA cert.

When the signature matches, Turtle Creek proceeds with the update command, else it
deletes or removes the OTA package from the platform.

Security

In-Band Manageability Framework
Developer Guide July 2021
20 Intel Confidential Document Number: 626909-2.8

5.2.6 Manifest Schema Checks

As Turtle Creek accepts OTA commands in the format of XML string, it enforces strict
Manifest Schema checks to ensure that the OTA commands meet a predefined
requirement of tags, fields, data lengths etc. This ensures that no unwanted data or tags
are injected in the OTA commands.

5.2.7 Docker Bench Security

As Turtle Creek users can also deploy Containers, Turtle Creek uses the Docker Bench
Security (DBS) to enhance the security of the platform. The Docker Bench Security is a
script that checks for common best practices around deploying Docker containers in
production.

Configuration that enforces DBS can be found in /etc/intel_manageability.conf under
<dbs> tag.

In production, it is recommended that the DBS be set to ON.

5.2.8 Platform TPM usage

Turtle Creek services communicate with each other over TLS secured MQTT sessions.
The certificates used for this communication are created during the provisioning phase
of the framework where the private/public certs and keys are generated using OpenSSL
API’s. While provisioning, Turtle Creek creates a small file system that writes all the
generated private keys.

As these certs or keys are considered secrets, they are kept encrypted on the disk. The
encryption is done using a randomly generated passphrase which Turtle Creek stores in
TPM.

Turtle Creek uses slot 0x81001231 on the platform TPM as it is unlikely to conflict with
any other programs TPM usage. If this slot is used by any other program, then we would
need to assign a new slot for Turtle Creek.

This can be done by modifying the file: /usr/bin/tc-get-tpm-passphrase

STORE_SLOT="0x81001231"

§

Enable Logging

 In-Band Manageability Framework
July 2021 Developer Guide
Document Number: 626909-2.8 Intel Confidential 21

6.0 Enable Logging

Upon starting the Turtle Creek services, the following agents will connect the device to
the cloud.

Agents: dispatcher, diagnostic, telemetry, configuration, cloudadapter

To enable debug messages, the user could configure logging.ini files for each agent by
changing ERROR to DEBUG with a text editor.

Note: These logging.ini files are located at /etc/intel-manageability/public/<agent-name>-
agent/logging.ini

For example: If the logging needs to be enabled for the dispatcher agent,

• sudo vi /etc/intel-manageability/public/<agent-name>-
agent/logging.ini

• Change the value ERROR to DEBUG

• Restart the agent using sudo systemctl restart dispatcher.

1. To reload the modified files to display debug logs, restart the agents with the

command below as root:

Command-line: sudo systemctl restart dispatcher diagnostic
telemetry configuration cloudadapter

2. To view logs of a particular agent, run the following command:

Command-line: journalctl -fu <agent-name>

Quick Tip: If the logging needs to be enabled on all the agents, the following command
can be used to enable logging. Once the command is executed, follow step 1 to restart
all agents.

sudo sed -i 's/level=ERROR/level=DEBUG/g' /etc/intel-manageabilit
y/public/*/logging.ini

§

OTA Updates via Manifest

In-Band Manageability Framework
Developer Guide July 2021
22 Intel Confidential Document Number: 626909-2.8

7.0 OTA Updates via Manifest

Manifest is an XML string that contains important information about the update to be
executed. Any OTA update type can be done via the Manifest Update, by entering XML
text to update the Endpoint.

To trigger Manifest updates:
1. Click Dashboard tab to select Edge Device. Then, click the device name.

2. Select Commands tab.

3. Scroll the page to the text area named Manifest Update.

OTA Updates via Manifest

 In-Band Manageability Framework
July 2021 Developer Guide
Document Number: 626909-2.8 Intel Confidential 23

7.1 Manifest Rules
• All tags marked as required (R) in the manifest examples below must be in the

manifest. Any tags marked as optional (O) can be omitted.

• The start of a section is indicated as follows <manifest>.

• The end of a section is indicated by </manifest>. All sections must have the start
and the matching end tag.

• Remove spaces, tabs, comments and so on. Make it a single continuous long string.
Example: <xml ...><manifest><ota><header>...</ota><manifest>

• Parameter within a tag cannot be empty.
Example: <description></description> is not allowed.

7.2 AOTA Updates

Supported AOTA commands and their functionality:

The supported docker commands are as indicated in the following table:
docker Command Definition

Import Importing an image to the device

Load Loading an image from the device

Pull Pulls an image or a repository from a registry

Remove Removes docker images from the system

Stats Returns a live data stream for all the running containers

The supported docker-compose commands are as stated in the following table:
docker-compose Command Definition

Up Deploying a service stack on the device

Down Stopping a service stack on the device

Pull Pulls an image or a repository from a registry

List Lists containers

Remove Removes docker images from the system

List of AOTA commands NOT supported:

Docker-Compose

Import

Load

Stats

Docker

Up

Down

List

OTA Updates via Manifest

In-Band Manageability Framework
Developer Guide July 2021
24 Intel Confidential Document Number: 626909-2.8

Fields in the AOTA form:
Field Description

App Docker or Docker-compose

Command Docker-Compose supported operations: Up, Down, Pull,
List and Remove.
Docker supported operations: Load, Import, Pull, Remove
and Stats

Container Tag Name tag for image/container.

Docker Compose File

Field to specify the custom yaml file for docker-compose
command. Example: custom.yml

Fetch Server URL to download the AOTA container tar.gz file

Note: If the server requires username/password to
download the file, you can provide in server username/
server password

Server Username/
Server Password

If server needs credentials, we need to specify the
username and password

Version Each container will have a tag with the version number.
You are recommended to use this version number under
version in the AOTA trigger. Command: sudo docker
images. See image below to see result of this command

Docker Registry

Docker Registry
Username/Password

Specify Docker Registry if accessing any registry other
than the default index.docker.io.
Optional fields Docker Registry Username/Password can
be used to access docker private images in AOTA through
docker and docker-compose up, pull commands.

7.2.1 AOTA Manifest Parameters

Tag Example
Required/
Optional

Notes

<?xml version='1.0'
encoding='utf-8'?> R XML header

<manifest> <manifest> R

<type></type> <type>ota</type> R Always OTA

<ota> <ota> R

<header> <header> R

<id></id> <id>yourid</id> O

OTA Updates via Manifest

 In-Band Manageability Framework
July 2021 Developer Guide
Document Number: 626909-2.8 Intel Confidential 25

<name></name> <name>SampleAOTA</
name> O

<description></descript
ion>

<description>Yourdescri
ption</description> O

<type></type> <type>aota</type> R

<repo></repo> <repo>remote</repo> R

</header> </header> R

<type> <type> R

<aota name=""> <aota name=”text”> R Text must follow XML
standards

<cmd></cmd> <cmd>up</cmd> R
Valid values: Up, down,
load, import, pull, list,
remove, stats

<app></app> <app>docker</app> R Valid values: Docker,
btrfs, compose

<fetch></fetch>
<fetch>
http.yoururl.com<fetch>

R

Trusted repo + name of
package
http://server
name/AOTA/
container tar.gz

<file></file> <file>custom.yml</file> O

User can specify the
name of custom
yaml file to use with
docker-compose

<version></version> <version>0.7.6</version
> O Update Package version.

<signature></signature>

<signature>96e92d</sig
nature>

O

Signature of package –
signed checksum of
package.
Recommended for
security purposes

<containerTag></contai
nerTag>

<containerTag>Modbusserv
ice</containerTag> R Name of container image

<username></username
>

<username>user</usern
ame> O

Username
credentials of the server
where the package is
hosted for downloads

<password></password
>

<password>ps</passwo
rd> O

Password credentials of
the server where the
package is hosted for
downloads

OTA Updates via Manifest

In-Band Manageability Framework
Developer Guide July 2021
26 Intel Confidential Document Number: 626909-2.8

<docker_username></d
ocker_username>

<docker_username>usr
</docker_username> O

Docker Username
credentials of the
private registry where
docker images reside

<docker_password></d
ocker_password>

<docker_password>psw
d</docker_password> O

Docker password
credentials of the
private registry where
docker images reside

<docker_registry></doc
ker_registry>

<docker_registry>hub.in
tel.docker.com</docker
_registry>

O
Docker registry URL of
any private registry
where the

 required docker images
reside.

</type> </type> R

</ota> </ota> R

</manifest> </manifest> R

7.2.2 Docker manifest examples

7.2.2.1 Example of docker image import manifest
<?xml version='1.0' encoding='utf-
8'?><manifest><type>ota</type><ota><header><type>aota</type><repo
>r emote</repo></header><type><aota
name='samplerpm'><cmd>import</cmd><app>docker</app><fetch>yoururl
/hdcrpmlite.tgz</fetch><version>1.0</version><containerTag>hdcrpm
lite:1</containerTag></aota></type></ota></manifest>

7.2.2.2 Example of docker image load manifest
<?xml version='1.0' encoding='utf-
8'?><manifest><type>ota</type><ota><header><type>aota</type><repo
>r emote</repo></header><type><aota
name='samplerpm'><cmd>load</cmd><app>docker</app><fetch>yoururl/c
offee.tgz</fet
ch><version>1.0</version><containerTag>coffee</containerTag></aot
a></ type></ota></manifest>

7.2.2.3 Example of docker pull manifest
<?xml version='1.0' encoding='utf-
8'?><manifest><type>ota</type><ota><header><type>aota</type><repo
>r emote</repo></header><type><aota
name='modbusservice'><cmd>pull</cmd><app>docker</app><version>1.0
</version><con tainerTag>hello-
world</containerTag></aota></type></ota></manifest>

OTA Updates via Manifest

 In-Band Manageability Framework
July 2021 Developer Guide
Document Number: 626909-2.8 Intel Confidential 27

7.2.2.4 Example of docker remove manifest
<?xml version='1.0' encoding='utf-
8'?><manifest><type>ota</type><ota><header><type>aota</type><repo
>r emote</repo></header><type><aota
name='modbusservice'><cmd>remove</cmd><app>docker</app><version>1
.0</version>< containerTag>hello-
world</containerTag></aota></type></ota></manifest>

7.2.2.5 Example of docker stats manifest
<?xml version="1.0" encoding="utf-
8"?><manifest><type>ota</type><ota><header><type>aota
</type><repo>remote</repo></header><type><aota name="sample-
rpm"><cmd>stats</cmd><app>docker</app></aota></type></ota></manif
est>

7.2.3 Docker-Compose Manifest Examples

7.2.3.1 Example of docker-compose up manifest
<?xml version='1.0' encoding='utf-
8'?><manifest><type>ota</type><ota><header><type>aota</type><repo
>r emote</repo></header><type><aota
name='samplerpm'><cmd>up</cmd><app>compose</app><fetch>yoururl/si
mplecompose.tar.gz</fetch><version>2.0</version><containerTag>sim
plecompose</containerTag></aota></type></ota></manifest>

7.2.3.2 Example of ‘docker-compose -f <custom.yml> up’ manifest
<?xml version="1.0" encoding="utf-
8"?><manifest><type>ota</type><ota><header><type>aota</type><repo
>r emote</repo></header><type><aota
name="samplerpm"><cmd>up</cmd><app>compose</app><fetch>https://ap
idev.devicewise.com:443/file/5dcbfbe114c9786cd10c6d84/simplecompo
se.tar.gz</fetch><file>custom.yml</file><containerTag>simplecompo
se</containerTag><username>username</username><password>XX
XXX</password></aota></type></ota></manifest>

7.2.3.3 Example of docker-compose down manifest
<?xml version='1.0' encoding='utf-
8'?><manifest><type>ota</type><ota><header><type>aota</type><repo
> remote</repo></header><type><aota
name='modbusservice'><cmd>down</cmd><app>compose</app><fetch>http
://ubitartifactory-or.intel.com/artifactory/bmpv2-test-
orlocal/bmp_075_update/modbusservice.tar.gz</fetch><version>1.0</
version><containerTag>modbusservice</containerTag></aota></type><
/ota></manifest>

OTA Updates via Manifest

In-Band Manageability Framework
Developer Guide July 2021
28 Intel Confidential Document Number: 626909-2.8

7.2.3.4 Example of ‘docker-compose -f <custom.yml> down’ manifest
<?xml version="1.0" encoding="utf-
8"?><manifest><type>ota</type><ota><header><type>aota</type><repo
>remote</repo></header><type><aota
name="samplerpm"><cmd>down</cmd><app>compose</app><file>custom.ym
l</file><container Tag>simple-
compose</containerTag></aota></type></ota></manifest>

7.2.3.5 Example of docker-compose pull manifest
 <?xml version='1.0' encoding='utf-
8'?><manifest><type>ota</type><ota><header><id>sampleId</id><name
> Sample AOTA</name><description>Sample AOTA manifest
file</description><type>aota</type><repo>remote</repo></header><t
ype><aota name='sample-docker-compose-
up'><cmd>pull</cmd><app>compose</app><fetch>http://127.0.0.1:80/s
imp le-
compose.tar.gz</fetch><version>1.0</version><containerTag>simplec
ompose</containerTag></aota></type></ota></manifest>

7.2.3.6 Example of ‘docker-compose -f <custom.yml> pull’ manifest
<?xml version="1.0" encoding="utf-
8"?><manifest><type>ota</type><ota><header><type>aota</type><repo
>re mote</repo></header><type><aota
name="samplerpm"><cmd>pull</cmd><app>compose</app><fetch>https://
apidev.devicewise.com:443/file/5dcbfbe114c9786cd10c6d84/simplecom
pose.tar.gz</fetch><file>custom.yml</file><containerTag>simplecom
pose</containerTag><username>username</username><password>XX
XXX</password></aota></type></ota></manifest>

7.2.3.7 Example of docker-compose list manifest
 <?xml version='1.0' encoding='utf-
8'?><manifest><type>ota</type><ota><header><id>sampleId</id><name
> Sample AOTA</name><description>Sample AOTA manifest
file</description><type>aota</type><repo>remote</repo></header><t
ype><aota name='sample-docker-
composeup'><cmd>list</cmd><app>compose</app><containerTag>simplec
ompose</containerTag></aota></type></ota></manifest>

7.2.3.8 Example of docker-compose remove manifest
 <?xml version='1.0' encoding='utf-
8'?><manifest><type>ota</type><ota><header><id>sampleId</id><name
> Sample AOTA</name><description>Sample AOTA manifest
file</description><type>aota</type><repo>remote</repo></header><t
ype><aota name='sample-docker-
composeremove'><cmd>remove</cmd><app>compose</app><version>1.0</v
ersion><containerTag>simple-
compose</containerTag></aota></type></ota></manifest>

OTA Updates via Manifest

 In-Band Manageability Framework
July 2021 Developer Guide
Document Number: 626909-2.8 Intel Confidential 29

7.3 FOTA Updates

To perform FOTA updates, IBVs must supply the SMBIOS or Device Tree info that is
unique to each platform SKU. The info must fulfill the vendor, version, release date,
manufacturer, and product name that matches the endpoint as shown below.

Prior to sending the manifest the user needs to make sure that the platform
information is present within the /etc/firmware_tool_info.conf file. Refer to Section 7 on
how to modify the file and extend the FOTA support to a new platform.

Note: The following information must match the data sent in the FOTA update command for
In-Band Manageability Framework to initiate a firmware update process.

Information Field Checks

Firmware Vendor Exact string match

Version Checks if its “unknown”

Release Date Checks if the FOTA date is newer than
current

System Manufacturer Exact string match

Product Name Exact string match

To find the firmware and system fields at the endpoint, run the commands below:

Intel x86 UEFI-based products

For UEFI based platforms, the firmware and system information can be found running
the following command:

 Command-line: dmidecode –t bios –t system

7.3.1 FOTA Manifest Parameters

Tag Example Required
/Optional Notes

<?xml version='1.0'
encoding='utf-8'?> R

<manifest> <manifest> R

<type></type> <type>ota</type> R Always OTA

<ota> <ota> R

OTA Updates via Manifest

In-Band Manageability Framework
Developer Guide July 2021
30 Intel Confidential Document Number: 626909-2.8

<header> <header> R

<id></id> <id>yourID</id> O

<name></name> <name>YourName</name> O Endpoint

Manufacturer Name

<description></description> <description>YourDescription
</de scription>

O

<type></type> <type>fota</type> R

<repo></repo> <repo>remote</repo> O

</header> </header> R

<type> <type> R

<fota name=''> <fota name='text'> R Comply with XML
Standards

<fetch></fetch> <fetch>http://url:80/BIOSUP
DAT E.tar</fetch>

R FOTA path created in
repository

<signature></signature> <signature> </signature> O Digital signature of
*.tar file.

<biosversion></biosversion> <biosversion>A..ZZZZ.B11.1<
/bio sversion>

R Verify with BIOS
Vendor (IBV)

<vendor></vendor> <vendor>VendorName</ven
dor>

R Verify with BIOS
Vendor (IBV)

<manufacturer></manufactur
er>

<manufacturer>BIOS_Manufa
ctur er</manufacturer>

R
In Release Notes
supplied by BIOS

vendor

<product></product>

<product>BIOS_Product</pro
duct >

In Release Notes supplied by
bios vendor

R Product Name set by
Manufacturer

<releasedate></releasedate> <releasedate>2017-06-
23</releasedate>

R Verify with BIOS
Vendor (IBV)

OTA Updates via Manifest

 In-Band Manageability Framework
July 2021 Developer Guide
Document Number: 626909-2.8 Intel Confidential 31

<tooloptions></tooloptions> <tooloptions>p/b/n</toolopti
ons>

O

Verify with BIOS

Vendor (IBV)

<guid></guid>
<guid>7acbd1a5a-33a4-
48c3ab11-
a4c33b3d0e56</guid>

O
Check for ‘System
Firmware Type’ on
running
cmd:fwupdate -l

<path></path> <path></path> R

</fota> </fota> R

</type> </type> R

</ota> </ota> R

</manifest> </manifest> R

The following table references each XML tag within a manifest that triggers the FOTA
update. Using the following XML tags in the order of description will trigger a FOTA
update via Manifest.

7.3.2 Sample FOTA Manifest
<?xml version='1.0' encoding='utf-
8'?><manifest><type>ota</type><ota><header><id>sampleID</id><name
>Sampl e FOTA</name><description>Sample FOTA manifest
file</description><type>fota</type><repo>remote</repo></header><t
ype><fota
name='sample'><fetch>http://ubuntufota.jf.intel.com:8000/Afulnx+X
041_BIOS.tar</fe
tch><biosversion>5.12</biosversion><vendor>American Megatrends
Inc.</vendor><manufacturer>Default
string</manufacturer><product>Default
string</product><releasedate>2017-
1120</releasedate><path>/var/cache/repositorytool</path></fota></
type></ota></manifest>

OTA Updates via Manifest

In-Band Manageability Framework
Developer Guide July 2021
32 Intel Confidential Document Number: 626909-2.8

7.4 SOTA Updates

SOTA flow can be broken into two parts:
1. Pre-reboot - The pre-boot part is when a SOTA update is triggered.
2. Post-reboot - The post-boot checks the health of critical manageability services

and takes corrective action.

7.4.1 SOTA Manifest Parameters

Tag Example Required/
Optional Notes

<?xml version='1.0'
encoding='utf-8'?> R

<manifest> <manifest> R

<type></type> <type>ota</type> R Always OTA

<header> <header> R

<id></id> <id>Example</id> O

<name></name> <name>Example</name> O

<description></descriptio
n

<description>Example</des
cription> O

<type></type> <type>sota</type> R

<repo></repo> <repo>remote</repo> R

</header> </header> R

<type> <type> R

<sota> <sota> R

<cmd></cmd> <cmd R

OTA Updates via Manifest

 In-Band Manageability Framework
July 2021 Developer Guide
Document Number: 626909-2.8 Intel Confidential 33

logtofile=”Y”>update</cmd>

<username></username> <username>xx</username> O

<password></password> <password>xxx</password> O

<release_date></release_
date>

<release_date>2020-01-
01</release_date> R

The release date provided
should always be in ‘YYYY-
MM-DD’ format.

Also release date should
be higher than the
platform mender date to
proceed to SOTA
update.

</sota> </sota> R

</type> </type> R

</ota> </ota> R

</manifest> </manifest> R

7.4.2 Sample SOTA Manifest:
<?xml version="1.0" encoding="utf-
8"?><manifest><type>ota</type><ota><header><id>a</id><name>a</n
ame><description>a</description><type>sota</type><repo>remote</
repo></header><type><sota><cmd
logtofile="Y">update</cmd><release-date>2020-
0101</release_date></sota></type></ota></manifest>

OTA Updates via Manifest

In-Band Manageability Framework
Developer Guide July 2021
34 Intel Confidential Document Number: 626909-2.8

7.5 Configuration Operations

Configuration update is used to change/retrieve/append/remove configuration
parameters value from the Configuration file located at /etc/intel_manageability.conf.
Refer to table below to understand the configuration tags, values, and descriptions.

Default Configuration Parameters:
Telemetry

Collection Interval
Seconds

60 seconds Time interval after which telemetry is
collected from the system.

Publish interval
seconds

300 seconds Time interval after which collected
telemetry is published to dispatcher
and the cloud

Max Cache Size 100 Maximum cache set to store the
telemetry data. This is the count of
messages that telemetry agent caches
before sending out to the cloud

Container Health
Interval Seconds

 600 seconds Interval after which container health
check is run and results are returned.

Diagnostic Values

Min Storage 100 MB Value of minimum storage that the
system should have before or after an
update

Min Memory 200 MB Value of minimum memory that the
system should have before or after an
update

Min Power Percent 20% Value of minimum battery percent
that system should have before or
after update

Mandatory SW docker, trtl, telemetry List of software that should be present
and are checked for.

Docker Bench
Security Interval
Seconds

900 seconds Time interval after which DBS will run
and report back to the cloud.

Network Check true This configures network check on the
platforms based on their Ethernet
capability.

Dispatcher Values

DBS Remove
Image on Failed
Container

False Specifies if the image should be
removed in the event of a failed
container as flagged by DBS.

Trusted
Repositories

 List of repositories that are trusted
and packages can be fetched from
them

SOTA Values

OTA Updates via Manifest

 In-Band Manageability Framework
July 2021 Developer Guide
Document Number: 626909-2.8 Intel Confidential 35

7.5.1 Configuration Manifest

To send the whole manifest with edited parameters at once,

• Go to Manifest Update widget by clicking the eye icon next to the device of interest
under Methods.

• Enter the parameters to be updated along with the path of the element in the
system.

• To see the values of parameters, use Get Element Manifest.

• To modify the parameters of interest, use the Set Element Manifest and edit the
values. Use the tag to identify the category of the configuration you are updating.
Example diagnostic or telemetry.

• To overwrite the existing configuration file with a new one then use the Load
Element Manifest.

The following commands are useful to append, remove values for parameters that have
multiple values. Parameters that have multiple values are trustedRepositories, sotaSW
and ubuntuAptSource.

• To append to existing value, use Append Element manifest.

• To remove part of a value, use Remove Element manifest

7.5.1.1 Example of Get Element manifest

Example:

• To set one value: minStorageMB

• To set multiple values at once: minStorageMB;minMemoryMB

Note: Path takes in keys as an input, with key as the configuration parameter tag, where the
value needs to be retrieved. To retrieve multiple values at once, use ‘;’ to separate one
tag from another as shown above.

<?xml version="1.0" encoding="UTF-
8"?><manifest><type>config</type><config><cmd>get_element</cmd><c
onfigtype><get><path>minStorageMB;minMemoryMB</path></get></confi
gtype></config></manifest>

Ubuntu Apt Source http://linux-ftp.jf.intel.com/
pub/mirrors/ubuntu/

Location used to update Ubuntu

Proceed Without
Rollback

True Whether SOTA update should go
through even when rollback is not
supported on the system.

OTA Updates via Manifest

In-Band Manageability Framework
Developer Guide July 2021
36 Intel Confidential Document Number: 626909-2.8

7.5.1.2 Example of Set Element manifest

Example:

• To set one value: minStorageMB:100

• To set multiple values at once: minStorageMB:100;minMemoryMB:200

Note: Path takes in key value pairs as an input, with key as the configuration parameter tag
and value to be set as the value. To set multiple key:value pairs, use “;” to separate one
pair from another as shown in the example above.

<?xml version="1.0" encoding="UTF-
8"?><manifest><type>config</type><config><cmd>set_element</cmd><c
onfigtype><set><path>minStorageMB:100;minMemoryMB:200</path>
</set></configtype></config></manifest>

7.5.1.3 Example of Append Element manifest

Note: Append is only applicable to three configuration tags, for example,
trustedRepositories, sotaSW and ubuntuAptSource

Path takes in key value pair format, example: trustedRepositories:
https://dummyURL.com

<?xml version="1.0" encoding="UTF-
8"?><manifest><type>config</type><config><cmd>append</cmd><config
type><append><path>trustedRepositories:https://dummyURL.com</path
> </append></configtype></config></manifest>

7.5.1.4 Example of Remove Element manifest

Note: Remove is only applicable to three configuration tags, for example,
trustedRepositories, sotaSW and ubuntuAptSource.

Path takes in key value pair format, example: trustedRepositories:
https://dummyURL.com

<?xml version="1.0" encoding="UTF-8"?><manifest><type>c
onfig</type><config><cmd>append</cmd><configtype><remove>
<path>trustedRepositories:https://dummyURL.com</path></remove></c
onfigtype></config></manifest>

7.5.1.5 Example of Load Element manifest

Note: The configuration file you provide in Fetch needs to be named as
intel_manageability.conf file. If you wish to send with signature, tar both the pem file
and the intel_manageability.conf in a tar file.

<?xml version="1.0" encoding="UTF- 8"?><manifest><type>co
nfig</type><config><cmd>load</cmd><configtype><load><fetc

OTA Updates via Manifest

 In-Band Manageability Framework
July 2021 Developer Guide
Document Number: 626909-2.8 Intel Confidential 37

h>http://ubuntufota.jf.intel.com:8000/turtle_creek.conf</fetch></
load></configtype></config></manifest>

7.5.2 Manual Configuration Update:

User can also manually update the parameters of the configuration file within
/etc/intel_manageability.conf instead of triggering a config update from the cloud.

To manually edit the parameter values. The user needs to open
/etc/intel_manageability.conf file in a text editor and edit the parameter values. Then
restart the configuration agent using the following command:

Command-line: sudo systemctl restart configuration

7.6 Power Management

Power Management such as restart, or shutdown of an end device can be triggered
using a Manifest as well as Button Click.

7.6.1 Restart via Manifest
<?xml version='1.0' encoding='utf-
8'?><manifest><type>cmd</type><cmd>restart</cmd></manifest>

7.6.2 Shutdown via Manifest
<?xml version='1.0' encoding='utf-
8'?><manifest><type>cmd</type><cmd>shutdown</cmd></manifest>

 §

Extending FOTA support

In-Band Manageability Framework
Developer Guide July 2021
38 Intel Confidential Document Number: 626909-2.8

8.0 Extending FOTA support

In-Band Manageability Framework supports a scalable FOTA solution where triggering
FOTA on any new platform is made easy by adding the platform related information to
a config file that the framework uses while installing the new firmware.

8.1 Understanding FOTA Configuration File

The FOTA config file is located at /etc/firmware_tool_info.conf. This file consists of all
the platform information of the products that supports the In-Band Manageability
FOTA.

If a new platform needs to be supported by the framework, the user needs to add the
platform related information in the XML format within this conf file.

The XML format of the conf file looks similar as the following snippet:

<?xml version="1.0" encoding="utf-8"?>
<firmware_component>
 <firmware_product name='NUC6CAYS'>
 <bios_vendor>Intel Corp.</bios_vendor>
 <operating_system>linux</operating_system>
 <firmware_tool>UpdateBIOS.sh</firmware_tool>
 <firmware_file_type>bio</firmware_file_type>
 </firmware_product>
</firmware_component>

Once the platform information is added, there are no code changes required. This
information from the conf file will be used by the code to perform a FOTA update.

8.2 Configuration Parameter Values

The following table helps in understanding what each tag in the firmware configuration
file refers to. The Required(R)/Optional(O) field associated with each tag represents
whether the tag is mandatory or not while adding a new platform information.

Tag Example Required
/Optional Notes

<?xml version='1.0'
encoding='utf-8'?> R

<firmware_component> <firmware_component> R

Extending FOTA support

 In-Band Manageability Framework
July 2021 Developer Guide
Document Number: 626909-2.8 Intel Confidential 39

<firmware_product
name=’<platform_name>’>
Or
<firmware_product
name=’<platform_name>'
tool_options='true'>
When tool_options is
required by the firmware
bootloader to install firmware

<firmware_product
name='NUC6CAYS'>

Or
<firmware_product
name='Default string'
tool_options='true'>

R

This is the platform
name. Run the
command
‘dmidecode –t bios –
t system’ to view the
information

<operating_system>…</oper
ating_system>

<operating_system>linux</o
perating_system> R OS name –

Linux/Windows

<firmware_file_type>…</firm
ware_file_type>

<firmware_file_type>bio</fir
mware_file_type>

R Type of the file name
– bio, fv, cap etc.

<bios_vendor>vendor_name
</bios_vendor>

<bios_vendor>Intel
Corp.</bios_vendor> O

 Run the command
‘dmidecode –t bios –
t system’ to view the
information

<firmware_tool>firmware_to
ol_used_for_platform</firmw
are_tool>

<firmware_tool>UpdateBIOS.
sh</firmware_tool> O Can be obtained

from the vendor

<manufacturer>manufacturer
_name</manufacturer>

<manufacturer>Intel
Corp.</manufacturer> O

Run the command
‘dmidecode –t bios –
t system’ to view the
information

<firmware_dest_path>locatio
n_of_new_firmware_file_to_b
e_stored<firmware_dest_pat
h>

<firmware_dest_path>/boot/
efi/</firmware_dest_path>

O

Only used on the
platforms where the
firmware update is
just to replace the
existing firmware file
in a path.

<firmware_tool_args>any_ad
ditional_args</firmware_tool
_args>

<firmware_tool_args>--
apply</firmware_tool_args> O

Additional
arguments that
follow the firmware
tool command to
apply firmware

<firmware_tool_check_args>f
irmware_arguments_to_chec
k_if_tool_exists</firmware_to
ol_check_args>

<firmware_tool_check_args>-
s</firmware_tool_check_args
>

O

Additional args that
are used to check if a
firmware tool exists
on system.

Extending FOTA support

In-Band Manageability Framework
Developer Guide July 2021
40 Intel Confidential Document Number: 626909-2.8

8.3 AppArmor Permissions:

When specifying the firmware update related to the tool or script name within the
configuration mentioned in Section 7.2, the user needs to make sure that the tool or
script path has AppArmor permissions granted to execute the firmware update. To add
the information to the AppArmor profile, follow the steps below.

For example, the tool or script used to perform update for an Intel NUC is located at
/usr/bin/UpdateBIOS.sh. In this case, the user needs to make sure that the dispatcher’s
AppArmor profile has an entry with rix access rights to the script path. If the entry does
not exist, the entry is required to be added to the AppArmor profile.

To edit the AppArmor profile:
1. sudo vi /etc/apparmor.d/usr.bin.dispatcher
2. Add the entry /usr/bin/UpdateBIOS.sh rix with a comma at the end and save the file.

3. After updating the file, restart the AppArmor using the following command:

sudo systemctl restart apparmor

 §

Creating a New Agent

 In-Band Manageability Framework
July 2021 Developer Guide
Document Number: 626909-2.8 Intel Confidential 41

9.0 Creating a New Agent

The framework code base can be extended when there is a requirement to add an
additional Agent to perform a designated task.

The following steps with examples given, provide a clear overview on how to setup a
new agent.

1. A new folder with name <agent_name>-agent should be created under the
~/turtlecreek directory.

2. Once the source code is added to the folder, mqtt keys need to be generated for
the new agent created. To generate mqtt-keys,

Go to ~/turtle-creek/fpm/mqtt/template/usr/bin/mqtt-ensure-keys-generated file,
and add the new agent name in the for-loop(line 50) shown in the below image.

3. These certificates are stored in

/etc/intel-manageability/secret/<agent_name>-
agent/<agent_name>-agent.crt

And the respective keys are stored in

/etc/intel-manageability/secret/<agent_name>-
agent/<agent_name>-agent.key

4. The above-mentioned paths must be used within the agent code to make sure keys
and certs are being pulled in from the right location.

5. Once the code is ready to be built, a service file created for the agent should
include the correct group name.

~ /turtle-creek/<agent_name>-agent/fpm-template/etc/systemd/
system/<agent_name>.service

An example of the dispatcher.service file located at

~/turtle-creek/dispatcher-agent/fpm-template/etc/systemd/
system/dispatcher.service

Creating a New Agent

In-Band Manageability Framework
Developer Guide July 2021
42 Intel Confidential Document Number: 626909-2.8

is shown below highlighting its respective group name.

 §

Issues and Troubleshooting

 In-Band Manageability Framework
July 2021 Developer Guide
Document Number: 626909-2.8 Intel Confidential 43

10.0 Issues and Troubleshooting

10.1 OTA Error Status

Error Message Description

COMMAND_FAILURE Diagnostic agent checks fail to run properly
or if diagnostic agent/ config agent is not
up when contacted.
{'status': 301, 'message':
'COMMAND FAILURE'}

COMMAND_SUCCESS Post and pre-install check go through.
{'status': 200, 'message':
'COMMAND SUCCESS'}

FILE_NOT_FOUND File to be fetched is not found.
{'status': 404, 'message': 'FILE NOT
FOUND'}

IMAGE_IMPORT_FAILURE Image is already present when Image
Import is triggered. {'status':
401, 'message': 'FAILED IMAGE
IMPORT, IMAGE ALREADY
PRESENT'}

INSTALL_FAILURE Installation was not successful due to
invalid package or one of the source file,
signature or version checks failed. {'status':
400,
'message': 'FAILED TO INSTALL'}

OTA_FAILURE Another OTA is in progress when
OTA is triggered. {'status': 303, 'message':
'OTA IN PROGRESS,
TRY LATER'}

UNABLE_TO_START_DOCKER_COMPOSE Docker-compose container is not able to
be started or spawned etc. {'status': 400,
'message': "Unable to start docker-
compose container."}

UNABLE_TO_STOP_DOCKER_COMPOSE Docker-compose down command
was not successful. {'status': 400,

 'message': "Unable to stop dockercompose
container."}

Issues and Troubleshooting

In-Band Manageability Framework
Developer Guide July 2021
44 Intel Confidential Document Number: 626909-2.8

UNABLE_TO_DOWNLOAD_DOCKER_COMPOSE Docker-compose downloaded
command failed. {'status': 400, 'message':
"Unable to download docker-compose
container."}

XML_FAILURE Result of bad formatting, missing
mandatory tag. {'status': 300, 'message':
'FAILED TO
PARSE/VALIDATE MANIFEST'}

10.2 Dispatcher-Agent Not Receiving Messages

If the dispatcher-agent does not receive the manifest message from the
cloudadapteragent after triggering SOTA/FOTA, the current workaround is to remove
mosquitto.db. This will remove the messages in the MQTT queue:

1. sudo systemctl stop mqtt
2. sudo rm /var/lib/mosquitto/mosquitto.db
3. sudo systemctl start mqtt

§

	1.0 Introduction
	1.1 Purpose
	1.2 Audience
	1.3 Terminology

	2.0 Source Overview
	2.1 Agents Overview
	2.2 Run Agents via Source Code

	3.0 Build instructions
	4.0 Configuring Framework
	5.0 Security
	5.1 OS Hardening
	5.2 Turtle Creek Hardening
	5.2.1 AppArmor Profiles
	5.2.2 Access Control List
	5.2.3 MQTT over TLS Support
	5.2.4 Trusted Repo List
	5.2.5 Signature Verification on OTA Packages
	5.2.6 Manifest Schema Checks
	5.2.7 Docker Bench Security
	5.2.8 Platform TPM usage

	6.0 Enable Logging
	7.0 OTA Updates via Manifest
	7.1 Manifest Rules
	7.2 AOTA Updates
	7.2.1 AOTA Manifest Parameters
	7.2.2 Docker manifest examples
	7.2.2.1 Example of docker image import manifest
	7.2.2.2 Example of docker image load manifest
	7.2.2.3 Example of docker pull manifest
	7.2.2.4 Example of docker remove manifest
	7.2.2.5 Example of docker stats manifest

	7.2.3 Docker-Compose Manifest Examples
	7.2.3.1 Example of docker-compose up manifest
	7.2.3.2 Example of ‘docker-compose -f <custom.yml> up’ manifest
	7.2.3.3 Example of docker-compose down manifest
	7.2.3.4 Example of ‘docker-compose -f <custom.yml> down’ manifest
	7.2.3.5 Example of docker-compose pull manifest
	7.2.3.6 Example of ‘docker-compose -f <custom.yml> pull’ manifest
	7.2.3.7 Example of docker-compose list manifest
	7.2.3.8 Example of docker-compose remove manifest

	7.3 FOTA Updates
	7.3.1 FOTA Manifest Parameters
	7.3.2 Sample FOTA Manifest

	7.4 SOTA Updates
	7.4.1 SOTA Manifest Parameters
	7.4.2 Sample SOTA Manifest:

	7.5 Configuration Operations
	7.5.1 Configuration Manifest
	7.5.1.1 Example of Get Element manifest
	7.5.1.2 Example of Set Element manifest
	7.5.1.3 Example of Append Element manifest
	7.5.1.4 Example of Remove Element manifest
	7.5.1.5 Example of Load Element manifest

	7.5.2 Manual Configuration Update:

	7.6 Power Management
	7.6.1 Restart via Manifest
	7.6.2 Shutdown via Manifest

	8.0 Extending FOTA support
	8.1 Understanding FOTA Configuration File
	8.2 Configuration Parameter Values
	8.3 AppArmor Permissions:

	9.0 Creating a New Agent
	10.0 Issues and Troubleshooting
	10.1 OTA Error Status
	10.2 Dispatcher-Agent Not Receiving Messages

